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Events and signals; State machine 

In the real world, things happen. Not only do things happen, but lots of things may 

happen at the same time, and at the most unexpected times. "Things that happen" are 

called events, and each one represents the specification of a significant occurrence that 
has a location in time and space. 

In the context of state machines, you use events to model the occurrence of a stimulus 

that can trigger a state transition. Events may include signals, calls, the passing of time, 

or a change in state. 

Events may be synchronous or asynchronous, so modeling events is wrapped up in the 
modeling of processes and threads. 

A perfectly static system is intensely uninteresting because nothing ever happens. All real 

systems have some dynamic dimension to them, and these dynamics are triggered by 

things that happen externally or internally. At an ATM machine, action is initiated by a 

user pressing a button to start a transaction. In an autonomous robot, action is initiated 

by the robot bumping into an object. In a network router, action is initiated by the 

detection of an overflow of message buffers. In a chemical plant, action is initiated by the 
passage of time sufficient for a chemical reaction. 

In the UML, each thing that happens is modeled as an event. An event is the specification 

of a significant occurrence that has a location in time and space. A signal, the passing of 

time, and a change of state are asynchronous events, representing events that can 

happen at arbitrary times. Calls are generally synchronous events, representing the 
invocation of an operation. 

The UML provides a graphical representation of an event, as Figure 21-1 shows. This 

notation permits you to visualize the declaration of events (such as the signal OffHook) as 

well as the use of events to trigger a state transition (such as the signal OffHook, which 

causes a transition from the Active to the Idle state as well as the execution of 
the dropConnection action). 

Figure 21-1. Events 

 

Terms and Concepts 

An event is the specification of a significant occurrence that has a location in time and 

space. In the context of state machines, an event is an occurrence of a stimulus that can 
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trigger a state transition. A signal is a kind of event that represents the specification of 

an asynchronous message communicated between instances. 

Kinds of Events 

Events may be external or internal. External events are those that pass between the 

system and its actors. For example, the pushing of a button and an interrupt from a 

collision sensor are both examples of external events. Internal events are those that pass 

among the objects that live inside the system. An overflow exception is an example of an 
internal event. 

In the UML, you can model four kinds of events: signals, calls, the passing of time, and a 

change in state. 

Signals 

A message is a named object that is sent asynchronously by one object and then 
received by another. A signal is a classifier for messages; it is a message type. 

Signals have a lot in common with plain classes. For example, signals may have 

instances, although you don't generally need to model them explicitly. Signals may also 

be involved in generalization relationships, permitting you to model hierarchies of events, 

some of which are general (for example, the signal NetworkFailure) and some of which are 

specific (for example, a specialization of NetworkFailure called WarehouseServerFailure). Also as 

for classes, signals may have attributes and operations. Before it has been sent by one 

object or after it is received by another, a signal is just an ordinary data object. 

Note 

The attributes of a signal serve as its parameters. For example, when you send a signal 

such as Collision, you can also specify a value for its attributes as parameters, such 
as Collision(5.3). 

A signal may be sent by the action of a transition in a state machine. It may be modeled 

as a message between two roles in an interaction. The execution of a method can also 

send signals. In fact, when you model a class or an interface, an important part of 

specifying the behavior of that element is specifying the signals that its operations can 
send. 

In the UML, as Figure 21-2 shows, you model signals as stereotyped classes. You can 

use a dependency, stereotyped as send, to indicate that an operation sends a particular 
signal. 

Figure 21-2. Signals 
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Call Events 

Just as a signal event represents the occurrence of a signal, a call event represents the 

receipt by an object of a call request for an operation on the object. A call event may 

trigger a state transition in a state machine or it may invoke a method on the target 

object. The choice is specified in the class definition for the operation. 

Whereas a signal is an asynchronous event, a call event is usually synchronous. This 

means that when an object invokes an operation on another object that has a state 

machine, control passes from the sender to the receiver, the transition is triggered by the 

event, the operation is completed, the receiver transitions to a new state, and control 

returns to the sender. In those cases where the caller does not need to wait for a 

response, a call can be specified as asynchronous. 

As Figure 21-3 shows, modeling a call event is indistinguishable from modeling a signal 

event. In both cases, you show the event, along with its parameters, as the trigger for a 

state transition. 

Figure 21-3. Call Events 

 

Note 

Although there are no visual cues to distinguish a signal event from a call event, the 

difference is clear in the backplane of your model. The receiver of an event will know the 

difference, of course (by declaring the operation in its operation list). Typically, a signal 

will be handled by its state machine, and a call event will be handled by a method. You 
can use your tools to navigate from the event to the signal or the operation. 

Time and Change Events 

A time event is an event that represents the passage of time. As Figure 21-4 shows, in 

the UML you model a time event by using the keyword after followed by some expression 

that evaluates to a period of time. Such expressions can be simple (for example, after 2 

seconds) or complex (for example, after 1 ms since exiting Idle). Unless you specify it 

explicitly, the starting time of such an expression is the time since entering the current 

state. To indicate a time event that occurs at an absolute time, use the keyword at. For 

example, the time event at (1 Jan 2005, 1200 UT) specifies an event that occurs on noon 
Universal Time on New Year's Day 2005. 

Figure 21-4. Time and Change Events 
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A change event is an event that represents a change in state or the satisfaction of some 

condition. As Figure 21-4 shows, in the UML you model a change event by using the 

keyword when followed by some Boolean expression. You can use such expressions for the 

continuous test of an expression (for example, when altitude < 1000). 

A change event occurs once when the value of the condition changes from false to true. 

It does not occur when the value of the condition changes from true to false. The event 
does not recur while the event remains true. 

Note 

Although a change event models a condition that is tested continuously, you can typically 
analyze the situation to see when to test the condition at discrete points in time. 

Sending and Receiving Events 

Signal events and call events involve at least two objects: the object that sends the 

signal or invokes the operation and the object to which the event is directed. Because 

signals are asynchronous, and because asynchronous calls are themselves signals, the 

semantics of events interact with the semantics of active objects and passive objects. 

Any instance of any class can send a signal to or invoke an operation of a receiving 

object. When an object sends a signal, the sender dispatches the signal and then 

continues along its flow of control, not waiting for any return from the receiver. For 

example, if an actor interacting with an ATM system sends the signal pushButton, the actor 

may continue along its way independent of the system to which the signal was sent. In 

contrast, when an object calls an operation, the sender dispatches the operation and 

then waits for the receiver to reply. For example, in a trading system, an instance of the 

class trader might invoke the operation confirmTransaction on some instance of the class TRade, 

thereby affecting the state of the TRade object. If this is a synchronous call, 
the trader object will wait until the operation is finished. 

Note 
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In some situations, you may want to show one object sending a signal to a set of objects 

(multicasting) or to any object in the system that might be listening (broadcasting). To 

model multicasting, you'd show an object sending a signal to a collection containing a set 

of receivers. To model broadcasting, you'd show an object sending a signal to another 

object that represents the system as a whole. 

Any instance of any class can receive a call event or a signal. If this is a synchronous call 

event, then the sender and the receiver are in a rendezvous for the duration of the 

operation. This means that the flow of control of the sender suspends until the execution 

of the operation completes. If this is a signal, then the sender and receiver do not 

rendezvous: The sender dispatches the signal but does not wait for a response from the 

receiver. In either case, this event may be lost (if no response to the event is specified), 

it may trigger the receiver's state machine (if there is one), or it may just invoke a 
normal method call. 

Note 

A call may be asynchronous. In this case, the caller continues immediately after issuing 

the call. The transmission of the message to the receiver and its execution by the 

receiver occur concurrently with the subsequent execution of the caller. When the 

execution of the method is complete, it just ends. If the method attempts to return 

values, they are ignored. 

In the UML, you model the call events that an object may receive as operations on the 

class of the object. In the UML, you model the named signals that an object may receive 

by naming them in an extra compartment of the class, as shown in Figure 21-5. 

Figure 21-5. Signals and Active Classes 

 
 

Note 

You can also attach named signals to an interface in this same manner. In either case, 

the signals you list in this extra compartment are not the declarations of a signal, but 
only the use of a signal. 

Common Modeling Techniques 
Modeling a Family of Signals 

In most event-driven systems, signal events are hierarchical. For example, an 

autonomous robot might distinguish between external signals, such as a Collision, and 

internal ones, such as a HardwareFault. External and internal signals need not be disjoint, 
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however. Even within these two broad classifications, you might find specializations. For 

example, HardwareFault signals might be further specialized as BatteryFault and MovementFault. 
Even these might be further specialized, such as MotorStall, a kind of MovementFault. 

By modeling hierarchies of signals in this manner, you can specify polymorphic events. 

For example, consider a state machine with a transition triggered only by the receipt of 

a MotorStall. As a leaf signal in this hierarchy, the transition can be triggered only by that 

signal, so it is not polymorphic. In contrast, suppose you modeled the state machine with 

a transition triggered by the receipt of a HardwareFault. In this case, the transition is 

polymorphic and can be triggered by a HardwareFault or any of its specializations, 

including BatteryFault, MovementFault, and MotorStall. 

To model a family of signals, 

 Consider all the different kinds of signals to which a given set of active objects 

may respond. 

 Look for the common kinds of signals and place them in a 

generalization/specialization hierarchy using inheritance. Elevate more general 

ones and lower more specialized ones. 

 Look for the opportunity for polymorphism in the state machines of these active 

objects. Where you find polymorphism, adjust the hierarchy as necessary by 

introducing intermediate abstract signals. 

Figure 21-6 models a family of signals that may be handled by an autonomous robot. 

Note that the root signal (RobotSignal) is abstract, which means that there may be no direct 

instances. This signal has two immediate concrete specializations 

(Collision and HardwareFault), one of which (HardwareFault) is further specialized. Note that 

the Collision signal has one parameter. 

Figure 21-6. Modeling Families of Signals 
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Modeling Abnormal Occurrences 

An important part of visualizing, specifying, and documenting the behavior of a class or 

an interface is specifying the abnormal occurrences that its operations can produce. If 

you are handed a class or an interface, the operations you can invoke will be clear, but 

the abnormal occurrences that each operation may raise will not be clear unless you 
model them explicitly. 

In the UML, abnormal occurrences are just additional kinds of events that can be 

modeled as signals. Error events may be attached to specification operations. Modeling 

exceptions is somewhat the inverse of modeling a general family of signals. You model a 

family of signals primarily to specify the kinds of signals an active object may receive; 

you model abnormal occurrences primarily to specify the kinds of abnormal occurrences 
that an object may produce. 

To model abnormal occurrences 

 For each class and interface, and for each operation of such elements, consider 

the normal things that happen. Then think of things that can go wrong and model 

them as signals among objects. 

 Arrange the signals in a hierarchy. Elevate general ones, lower specialized ones, 

and introduce intermediate exceptions as necessary. 

 For each operation, specify the abnormal occurrence signals that it may raise. You 

can do so explicitly (by showing send dependencies from an operation to its 
signals) or you can use sequence diagrams illustrating various scenarios. 

Figure 21-7 models a hierarchy of abnormal occurrences that may be produced by a 

standard library of container classes, such as the template class Set. This hierarchy is 

headed by the abstract signal Error and includes three specialized kinds of 

errors: Duplicate, Overflow, and Underflow. As shown, the add operation may 

produce Duplicate and Overflow signals, and the remove operation produces only 

the Underflow signal. Alternatively, you could have put these dependencies in the 

background by naming them in each operation's specification. Either way, by knowing 

which signals each operation may send, you can create clients that use the Set class 
correctly. 

Figure 21-7. Modeling Error Conditions 
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Note 

Signals, including abnormal occurrence signals, are asynchronous events between 

objects. UML also includes exceptions such as those found in Ada or C++. Exceptions are 

conditions that cause the mainline execution path to be abandoned and a secondary 

execution path executed instead. Exceptions are not signals; instead, they are a 

convenient mechanism for specifying an alternate flow of control within a single 

synchronous thread of execution. 

State Machines 

Using an interaction, you can model the behavior of a society of objects that work 

together. Using a state machine, you can model the behavior of an individual object. A 

state machine is a behavior that specifies the sequences of states an object goes through 
during its lifetime in response to events, together with its responses to those events. 

You use state machines to model the dynamic aspects of a system. For the most part, 

this involves specifying the lifetime of the instances of a class, a use case, or an entire 

system. These instances may respond to such events as signals, operations, or the 

passing of time. When an event occurs, some effect will take place, depending on the 

current state of the object. An effect is the specification of a behavior execution within a 

state machine. Effects ultimately resolve into in the execution of actions that change the 

state of an object or return values. A state of an object is a period of time during which it 
satisfies some condition, performs some activity, or waits for some event. 

You can visualize the dynamics of execution in two ways: by emphasizing the flow of 

control from activity to activity (using activity diagrams) or by emphasizing the potential 

states of the objects and the transitions among those states (using state diagrams). 

Well-structured state machines are like well-structured algorithms: They are efficient, 
simple, adaptable, and understandable. 

Consider the life of your home's thermostat on one crisp fall day. In the wee hours of the 

morning, things are pretty quiet for the humble thermostat. The temperature of the 

house is stable and, save for a rogue gust of wind or a passing storm, the temperature 

http://umlguide2.uw.hu/gloss01.html#gloss01entry156


9 
 

outside the house is stable, too. Toward dawn, however, things get more interesting. The 

sun starts to peek over the horizon, raising the ambient temperature slightly. Family 

members start to wake; someone might tumble out of bed and twist the thermostat's 

dial. Both of these events are significant to the home's heating and cooling system. The 

thermostat starts behaving like all good thermostats should, by commanding the home's 

heater to raise the inside temperature or the air conditioner to lower the inside 
temperature. 

Once everyone has left for work or school, things get quiet, and the temperature of the 

house stabilizes once again. However, an automatic program might then cut in, 

commanding the thermostat to lower the temperature to save on electricity and gas. The 

thermostat goes back to work. Later in the day, the program comes alive again, this time 

commanding the thermostat to raise the temperature so that the family can come home 
to a cozy house. 

In the evening, with the home filled with warm bodies and heat from cooking, the 

thermostat has a lot of work to do to keep the temperature even while it runs the heater 
and cooler efficiently. Finally, at night, things return to a quiet state. 

A number of software-intensive systems behave just like that thermostat. A pacemaker 

runs continuously but adapts to changes in activity or heartbeat pattern. A network 

router runs continuously as well, silently guiding asynchronous streams of bits, 

sometimes adapting its behavior in response to commands from the network 

administrator. A cell phone works on demand, responding to input from the user and to 
messages from the local cells. 

In the UML, you model the static aspects of a system by using such elements as class 

diagrams and object diagrams. These diagrams let you visualize, specify, construct, and 

document the things that live in your system, including classes, interfaces, components, 

nodes, and use cases and their instances, together with the way those things sit in 
relationship to one another. 

In the UML, you model the dynamic aspects of a system by using state machines. 

Whereas an interaction models a society of objects that work together to carry out some 

action, a state machine models the lifetime of a single object, whether it is an instance of 

a class, a use case, or even an entire system. In the life of an object, it may be exposed 

to a variety of events, such as a signal, the invocation of an operation, the creation or 

destruction of the object, the passing of time, or the change in some condition. In 

response to these events, the object performs some action, which is a computation, and 

then it changes its state to a new value. The behavior of such an object is therefore 

affected by the past, at least as the past is reflected in the current state. An object may 

receive an event, respond with an action, then change its state. An object may receive 

another event and its response may be different, depending on its current state in 
response to the previous event. 

You use state machines to model the behavior of any modeling element, most commonly 

a class, a use case, or an entire system. State machines may be visualized using state 

diagrams. You can focus on the event-ordered behavior of an object, which is especially 
useful in modeling reactive systems. 

The UML provides a graphical representation of states, transitions, events, and effects, 

as Figure 22-1 shows. This notation permits you to visualize the behavior of an object in 

a way that lets you emphasize the important elements in the life of that object. 

Figure 22-1. State Machines 
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Terms and Concepts 

A state machine is a behavior that specifies the sequences of states an object goes 

through during its lifetime in response to events, together with its responses to those 

events. A state is a condition or situation during the life of an object during which it 

satisfies some condition, performs some activity, or waits for events. An event is the 

specification of a significant occurrence that has a location in time and space. In the 

context of state machines, an event is an occurrence of a stimulus that can trigger a 

state transition. A transition is a relationship between two states indicating that an 

object in the first state will perform certain actions and enter the second state when a 

specified event occurs and specified conditions are satisfied. An activity is ongoing 

nonatomic execution within a state machine. An action is an executable computation 

that results in a change in state of the model or the return of a value. Graphically, a state 

is rendered as a rectangle with rounded corners. A transition is rendered as a solid 
directed line or path from the original state to the new state. 

Context 

Every object has a lifetime. On creation, an object is born; on destruction, an object 

ceases to exist. In between, an object may act on other objects (by sending them 

messages) as well as be acted on (by being the target of a message). In many cases, 

these messages will be simple, synchronous operation calls. For example, an instance of 

the class Customer might invoke the operation getAccountBalance on an instance of the 

class BankAccount. Objects such as these don't need a state machine to specify their 
behavior because their current behavior does not depend on their past. 

In other kinds of systems, you'll encounter objects that must respond to signals, which 

are asynchronous messages communicated between instances. For example, a cellular 

phone must respond to random phone calls (from other phones), keypad events (from 

the customer initiating a phone call), and to events from the network (when the phone 

moves from one call to another). Similarly, you'll encounter objects whose current 

behavior depends on their past behavior. For example, the behavior of an air-to-air 

missile guidance system will depend on its current state, such as NotFlying (it's not a good 

idea to launch a missile while it's attached to an aircraft that's still sitting on the ground) 

http://umlguide2.uw.hu/14021535.html
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or Searching (you shouldn't arm the missile until you have a good idea what it's going to 

hit). 

The behavior of an object that must respond to asynchronous messages or whose current 

behavior depends on its past is best specified by using a state machine. This 

encompasses instances of classes that can receive signals, including many active objects. 

In fact, an object that receives a signal but has no transition for that signal in its current 

state and does not defer the signal in that state will simply ignore that signal. In other 

words, the absence of a transition for a signal is not an error; it means that the signal is 

not of interest at that point. You'll also use state machines to model the behavior of 

entire systems, especially reactive systems, which must respond to signals from actors 
outside the system. 

Note 

Most of the time, you'll use interactions to model the behavior of a use case, but you can 

also use state machines for the same purpose. Similarly, you can use state machines to 

model the behavior of an interface. Although an interface may not have any direct 

instances, a class that realizes such an interface may. Such a class must conform to the 
behavior specified by the state machine of this interface. 

States 

A state is a condition or situation during the life of an object during which it satisfies 

some condition, performs some activity, or waits for some event. An object remains in a 

state for a finite amount of time. For example, a Heater in a home might be in any of four 

states: Idle (waiting for a command to start heating the house), Activating (its gas is on, 

but it's waiting to come up to temperature), Active (its gas and blower are both on), 
and ShuttingDown (its gas is off but its blower is on, flushing residual heat from the system). 

When an object's state machine is in a given state, the object is said to be in that state. 
For example, an instance of Heater might be Idle or perhaps ShuttingDown. 

A state has several parts: 

1. Name A textual string that distinguishes the state from other states; a state 

may be anonymous, meaning that it has no name 

2. Entry/exit 

effects 

Actions executed on entering and exiting the state, respectively 

3. Internal 

transitions 

Transitions that are handled without causing a change in state 

4. Substates The nested structure of a state, involving nonorthogonal (sequentially 

active) or orthogonal (concurrently active) substates 

5. Deferred 

events 

A list of events that are not handled in that state but, rather, are 

postponed and queued for handling by the object in another state 

 
Note 

A state name may be text consisting of any number of letters, numbers, and certain 

punctuation marks (except for marks such as the colon) and may continue over several 

lines. In practice, state names are short nouns or noun phrases drawn from the 
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vocabulary of the system you are modeling. Typically, you capitalize the first letter of 

every word in a state name, as in Idle or ShuttingDown. 

As Figure 22-2 shows, you represent a state as a rectangle with rounded corners. 

Figure 22-2. States 

 

 
Initial and Final States 

As the figure shows, there are two special states that may be defined for an object's 

state machine. First, there's the initial state, which indicates the default starting place for 

the state machine or substate. An initial state is represented as a filled black circle. 

Second, there's the final state, which indicates that the execution of the state machine or 

the enclosing state has been completed. A final state is represented as a filled black circle 
surrounded by an unfilled circle (a bull's eye). 

Note 

Initial and final states are really pseudostates. Neither may have the usual parts of a 

normal state, except for a name. A transition from an initial state to an ordinary state 

may have the full complement of features, including a guard condition and action (but 
not a trigger event). 

Transitions 

A transition is a relationship between two states indicating that an object in the first state 

will perform certain actions and enter the second state when a specified event occurs and 

specified conditions are satisfied. On such a change of state, the transition is said to fire. 

Until the transition fires, the object is said to be in the source state; after it fires, it is 

said to be in the target state. For example, a Heater might transition from the Idle to 

the Activating state when an event such as tooCold (with the parameter desiredTemp) occurs. 

A transition has five parts. 

1. Source 

state 

The state affected by the transition; if an object is in the source state, an 

outgoing transition may fire when the object receives the trigger event of 

the transition and if the guard condition, if any, is satisfied 

2. Event 

trigger 

The event whose recognition by the object in the source state makes the 

transition eligible to fire, providing its guard condition is satisfied 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig02
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1. Source 

state 

The state affected by the transition; if an object is in the source state, an 

outgoing transition may fire when the object receives the trigger event of 

the transition and if the guard condition, if any, is satisfied 

3. Guard 

condition 

A Boolean expression that is evaluated when the transition is triggered by 

the reception of the event trigger; if the expression evaluates true, the 

transition is eligible to fire; if the expression evaluates false, the transition 

does not fire, and if there is no other transition that could be triggered by 

that same event, the event is lost 

4. Effect An executable behavior, such as an action, that may act on the object that 

owns the state machine and indirectly on other objects that are visible to 

the object 

5. Target 

state 

The state that is active after the completion of the transition 

As Figure 22-3 shows, a transition is rendered as a solid directed line from the source 

to the target state. A self-transition is a transition whose source and target states are the 

same. 

Figure 22-3. Transitions 

 

 
Note 

A transition may have multiple sources (in which case, it represents a join from multiple 

concurrent states) as well as multiple targets (in which case, it represents a fork to 
multiple concurrent states). See later discussion under orthogonal substates. 

Event Trigger 

An event is the specification of a significant occurrence that has a location in time and 

space. In the context of state machines, an event is an occurrence of a stimulus that can 

trigger a state transition. As shown in the previous figure, events may include signals, 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig03
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calls, the passing of time, or a change in state. A signal or a call may have parameters 

whose values are available to the transition, including expressions for the guard condition 
and action. 

It is also possible to have a completion transition, represented by a transition with no 

event trigger. A completion transition is triggered implicitly when its source state has 
completed its behavior, if any. 

Note 

An event trigger may be polymorphic. For example, if you've specified a family of signals, 

then a transition whose trigger event is S can be triggered by S, as well as by any children 
of S. 

Guard Condition 

As the previous figure shows, a guard condition is rendered as a Boolean expression 

enclosed in square brackets and placed after the trigger event. A guard condition is 

evaluated only after the trigger event for its transition occurs. Therefore, it's possible to 

have multiple transitions from the same source state and with the same event trigger, as 

long as those conditions don't overlap. 

A guard condition is evaluated just once for each transition at the time the event occurs, 

but it may be evaluated again if the transition is retriggered. Within the Boolean 

expression, you can include conditions about the state of an object (for example, the 

expression aHeater in Idle, which evaluates true if the Heater object is currently in 

the Idle state). If the condition is not true when it is tested, the event does not occur 

later when the condition becomes true. Use a change event to model that kind of 
behavior. 

Note 

Although a guard condition is evaluated only once each time its transition triggers, a 
change event is potentially evaluated continuously. 

Effect 

An effect is a behavior that is executed when a transition fires. Effects may include inline 

computation, operation calls (to the object that owns the state machine as well as to 

other visible objects), the creation or destruction of another object, or the sending of a 

signal to an object. To indicate sending a signal you can prefix the signal name with the 
keyword send as a visual cue. 

Transitions only occur when the state machine is quiescent, that is, when it is not 

executing an effect from a previous transition. The execution of the effect of a transition 

and any associated entry and exit effects run to completion before any additional events 

are allowed to cause additional transitions. This is in contrast to a do-activity (described 
later in this chapter), which may be interrupted by events. 

Note 

You can explicitly show the object to which a signal is sent by using a dependency 
stereotyped as send, whose source is the state and whose target is the object. 
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Advanced States and Transitions 

You can model a wide variety of behavior using only the basic features of states and 

transitions in the UML. Using these features, you'll end up with flat state machines, which 

means that your behavioral models will consist of nothing more than arcs (transitions) 

and vertices (states). 

UML state machines have a number of features that help you to manage complex 

behavioral models. These features often reduce the number of states and transitions 

you'll need, and they codify a number of common and somewhat complex idioms you'd 

otherwise encounter using flat state machines. Some of these advanced features include 

entry and exit effects, internal transitions, do-activities, and deferred events. These 

features are shown as text strings within a text compartment of the state symbol, as 

shown in Figure 22-4. 

Figure 22-4. Advanced States and Transitions 

 

 
 

Entry and Exit Effects 

In a number of modeling situations, you'll want to perform some setup action whenever 

you enter a state, no matter which transition led you there. Similarly, when you leave a 

state, you'll want to perform some cleanup action no matter which transition led you 

away. For example, in a missile guidance system, you might want to explicitly announce 

the system is onTrack whenever it's in the tracking state, and offTrack whenever it's out of 

the state. Using flat state machines, you can achieve this effect by putting those actions 

on every entering and exiting transition, as appropriate. However, that's somewhat error 

prone; you have to remember to add these actions every time you add a new transition. 

Furthermore, modifying this action means that you have to touch every neighboring 

transition. 

As Figure 22-4 shows, the UML provides a shorthand for this idiom. In the symbol for 

the state, you can include an entry effect (marked by the keyword entry) and an exit 

effect (marked by the keyword exit), each with its appropriate action. Whenever you 

enter the state, its entry action is dispatched; whenever you leave the state, its exit 
action is dispatched. 

Entry and exit effects may not have arguments or guard conditions, but the entry effect 

at the top level of a state machine for a class may have parameters for the arguments 
that the machine receives when the object is created. 

Internal Transitions 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig04
http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig04
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Once inside a state, you'll encounter events you'll want to handle without leaving the 

state. These are called internal transitions, and they are subtly different from self-

transitions. In a self-transition, such as you see in Figure 21-3, an event triggers the 

transition, you leave the state, an action (if any) is performed, and then you reenter the 

same state. Because this transition exits and then enters the state, a self-transition 

executes the state's exit action, then it executes the action of the self-transition, and 
finally, it executes the state's entry action. 

However, suppose you want to handle the event but don't want to execute the state's 

entry and exit actions. The UML provides a shorthand for this idiom using an internal 

transition. An internal transition is a transition that responds to an event by performing 

an effect but does not change state. In Figure 21-4, the event newTarget labels an 

internal transition; if this event occurs while the object is in the tracking state, 

action tracker.acquire is executed but the state remains the same, and no entry or exit 

actions are executed. You indicate an internal transition by including a transition string 

(including an event name, optional guard condition, and effect) inside the symbol for a 

state instead of on a transition arrow. Note that the keywords entry, exit, and do are 

reserved words that may not be used as event names. Whenever you are in the state 

and an event labeling an internal transition occurs, the corresponding effect is performed 

without leaving and then reentering the state. Therefore, the event is handled without 
invoking the state's exit and then entry actions. 

Note 

Internal transitions may have events with parameters and guard conditions. 

Do-Activities 

When an object is in a state, it generally sits idle, waiting for an event to occur. 

Sometimes, however, you may wish to model an ongoing activity. While in a state, the 

object does some work that will continue until it is interrupted by an event. For example, 

if an object is in the tracking state, it might followTarget as long as it is in that state. 

As Figure 21-4 shows, in the UML you use the special do transition to specify the work 

that's to be done inside a state after the entry action is dispatched. You can also specify 

a behavior, such as a sequence of actionsfor example, do / op1(a); op2(b); op3(c). If the 

occurrence of an event causes a transition that forces an exit from the state, any ongoing 
do-activity of the state is immediately terminated. 

Note 

A do-activity is equivalent to an entry effect that starts the activity when the state is 
entered and an exit effect that stops the activity when the state is exited. 

Deferred Events 

Consider a state such as tracking. As illustrated in Figure 21-3, suppose there's only one 

transition leading out of this state, triggered by the event contact. While in the 

state TRacking, any events other than contact and other than those handled by its substates 

will be lost. That means that the event may occur, but it will be ignored and no action will 
result because of the presence of that event. 

In every modeling situation, you'll want to recognize some events and ignore others. You 

include those you want to recognize as the event triggers of transitions; those you want 

to ignore you just leave out. However, in some modeling situations, you'll want to accept 

some events but postpone a response to them until later. For example, while in 

http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig03
http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig04
http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig04
http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig03


17 
 

the TRacking state, you may want to postpone a response to signals such as selfTest, 

perhaps sent by some maintenance agent in the system. 

In the UML, you can specify this behavior by using deferred events. A deferred event is 

an event whose processing in the state is postponed until another state becomes active; 

if the event is not deferred in that state, the event is handled and may trigger transitions 

as if it had just occurred. If the state machine passes through a sequence of states in 

which the event is deferred, it is preserved until a state is finally encountered in which 

the event is not deferred. Other nondeferred events may occur during the interval. As 

you can see in Figure 21-4, you can specify a deferred event by listing the event with 

the special action defer. In this example, selfTest events may happen while in 

the TRacking state, but they are held until the object is in the Engaging state, at which time it 
appears as if they just occurred. 

Note 

The implementation of deferred events requires the presence of an internal queue of 

events. If an event happens but is listed as deferred, it is queued. Events are taken off 
this queue as soon as the object enters a state that does not defer these events. 

Submachines 

A state machine may be referenced within another state machine. Such a referenced 

state machine is called a submachine. They are useful in building large state models in a 
structured manner. See the UML Reference Manual for details. 

Substates 

These advanced features of states and transitions solve a number of common state 

machine modeling problems. However, there's one more feature of the UML's state 

machinessubstatesthat does even more to help you simplify the modeling of complex 

behaviors. A substate is a state that's nested inside another one. For example, 

a Heater might be in the Heating state, but also while in the Heating state, there might be a 

nested state called Activating. In this case, it's proper to say that the object is 
both Heating and Activating. 

A simple state is a state that has no substructure. A state that has substatesthat is, 

nested statesis called a composite state. A composite state may contain either concurrent 

(orthogonal) or sequential (nonorthogonal) substates. In the UML, you render a 

composite state just as you do a simple state, but with an optional graphic compartment 
that shows a nested state machine. Substates may be nested to any level. 

Nonorthogonal Substates 

Consider the problem of modeling the behavior of an ATM. This system might be in one 

of three basic states: Idle (waiting for customer interaction), Active (handling a customer's 

transaction), and Maintenance (perhaps having its cash store replenished). While Active, the 

behavior of the ATM follows a simple path: Validate the customer, select a transaction, 

process the transaction, and then print a receipt. After printing, the ATM returns to 

the Idle state. You might represent these stages of behavior as the 

states Validating, Selecting, Processing, and Printing. It would even be desirable to let the 

customer select and process multiple transactions after Validating the account and 
before Printing a final receipt. 

http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig04
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The problem here is that, at any stage in this behavior, the customer might decide to 

cancel the transaction, returning the ATM to its Idle state. Using flat state machines, you 

can achieve that effect, but it's quite messy. Because the customer might cancel the 

transaction at any point, you'd have to include a suitable transition from every state in 

the Active sequence. That's messy because it's easy to forget to include these transitions 

in all the right places, and many such interrupting events means you end up with a 

multitude of transitions zeroing in on the same target state from various sources, but 
with the same event trigger, guard condition, and action. 

Using nested substates, there's a simpler way to model this problem, as Figure 22-

5 shows. Here, the Active state has a substructure, containing the 

substates Validating, Selecting, Processing, and Printing. The state of the ATM changes 

from Idle to Active when the customer enters a credit card in the machine. On entering 

the Active state, the entry action readCard is performed. Starting with the initial state of the 

substructure, control passes to the Validating state, then to the Selecting state, and then to 

the Processing state. After Processing, control may return to Selecting (if the customer has 

selected another transaction) or it may move on to Printing. After Printing, there's a 

completion transition back to the Idle state. Notice that the Active state has an exit action, 
which ejects the customer's credit card. 

Figure 22-5. Sequential Substates 

 

 
 

Notice also the transition from the Active state to the Idle state, triggered by the 

event cancel. In any substate of Active, the customer might cancel the transaction, and 

that returns the ATM to the Idle state (but only after ejecting the customer's credit card, 

which is the exit action dispatched on leaving the Active state, no matter what caused a 

transition out of that state). Without substates, you'd need a transition triggered 
by cancel on every substructure state. 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig05
http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig05
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Substates such as Validating and Processing are called nonorthogonal, or disjoint, substates. 

Given a set of nonorthogonal substates in the context of an enclosing composite state, 

the object is said to be in the composite state and in only one of those substates (or the 

final state) at a time. Therefore, nonorthogonal substates partition the state space of the 

composite state into disjoint states. 

From a source outside an enclosing composite state, a transition may target the 

composite state or it may target a substate. If its target is the composite state, the 

nested state machine must include an initial state, to which control passes after entering 

the composite state and after performing its entry action, if any. If its target is the 

nested state, control passes to the nested state after performing the entry action (if any) 
of the composite state and then the entry action (if any) of the substate. 

A transition leading out of a composite state may have as its source the composite state 

or a substate. In either case, control first leaves the nested state (and its exit action, if 

any, is executed), then it leaves the composite state (and its exit action, if any, is 

executed). A transition whose source is the composite state essentially cuts short 

(interrupts) the activity of the nested state machine. The completion transition of a 

composite state is taken when control reaches the final substate within the composite 
state. 

Note 

A nested nonorthogonal state machine may have at most one initial substate and one 
final substate. 

History States 

A state machine describes the dynamic aspects of an object whose current behavior 

depends on its past. A state machine in effect specifies the legal ordering of states an 
object may go through during its lifetime. 

Unless otherwise specified, when a transition enters a composite state, the action of the 

nested state machine starts over again at its initial state (unless, of course, the transition 

targets a substate directly). However, there are times you'd like to model an object so 

that it remembers the last substate that was active prior to leaving the composite state. 

For example, in modeling the behavior of an agent that does an unattended backup of 

computers across a network, you'd like it to remember where it was in the process if it 

ever gets interrupted by, for example, a query from the operator. 

Using flat state machines, you can model this, but it's messy. For each sequential 

substate, you'd need to have its exit action post a value to some variable local to the 

composite state. Then the initial state to this composite state would need a transition to 

every substate with a guard condition, querying the variable. In this way, leaving the 

composite state would cause the last substate to be remembered; entering the 

composite state would transition to the proper substate. That's messy because it requires 

you to remember to touch every substate and to set an appropriate exit action. It leaves 

you with a multitude of transitions fanning out from the same initial state to different 

target substates with very similar (but different) guard conditions. 

In the UML, a simpler way to model this idiom is by using history states. A history state 

allows a composite state that contains nonorthogonal substates to remember the last 

substate that was active in it prior to the transition from the composite state. As Figure 

22-6 shows, you represent a shallow history state as a small circle containing the 

symbol H. 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig06
http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig06
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Figure 22-6. History State 

 

 
 

If you want a transition to activate the last substate, you show a transition from outside 

the composite state directly to the history state. The first time you enter a composite 

state, it has no history. This is the meaning of the single transition from the history state 

to a sequential substate such as Collecting. The target of this transition specifies the initial 

state of the nested state machine the first time it is entered. Continuing, suppose that 

while in the BackingUp state and the Copying state, the query event is posted. Control 

leaves Copying and BackingUp (dispatching their exit actions as necessary) and returns to 

the Command state. When the action of Command completes, the completion transition returns 

to the history state of the composite state BackingUp. This time, because there is a history 

to the nested state machine, control passes back to the Copying statethus bypassing 

the Collecting statebecause Copying was the last substate active prior to the transition from 
the state BackingUp. 

Note 

The symbol H designates a shallow history, which remembers only the history of the 

immediate nested state machine. You can also specify deep history, shown as a small 

circle containing the symbol H*. Deep history remembers down to the innermost nested 

state at any depth. If you have only one level of nesting, shallow and deep history states 

are semantically equivalent. If you have more than one level of nesting, shallow history 

remembers only the outermost nested state; deep history remembers the innermost 

nested state at any depth. 

 
 

In either case, if a nested state machine reaches a final state, it loses its stored history 
and behaves as if it had not yet been entered for the first time. 

Orthogonal Substates 

Nonorthogonal substates are the most common kind of nested state machine you'll 

encounter. In certain modeling situations, however, you'll want to specify orthogonal 

regions. These regions let you specify two or more state machines that execute in 

parallel in the context of the enclosing object. 
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For example, Figure 22-7 shows an expansion of the Maintenance state from Figure 21-

5. Maintenance is decomposed into two orthogonal regions, Testing and Commanding, shown by 

nesting them in the Maintenance state but separating them from one another with a dashed 

line. Each of these orthogonal regions is further decomposed into substates. When 

control passes from the Idle to the Maintenance state, control then forks to two concurrent 

flowsthe enclosing object will be in both the Testing region and the Commanding region. 

Furthermore, while in the Commanding region, the enclosing object will be in the Waiting or 
the Command state. 

Figure 22-7. Concurrent Substates 

 

 
 

Note 

This is what distinguishes nonorthogonal substates and orthogonal substates. Given two 

or more nonorthogonal substates at the same level, an object will be in one of those 

substates or the other. Given two or more orthogonal regions at the same level, an 
object will be in a state from each of the orthogonal regions. 

 
 

Execution of these two orthogonal regions continues in parallel. Eventually, each nested 

state machine reaches its final state. If one orthogonal region reaches its final state 

before the other, control in that region waits at its final state. When both nested state 

machines reach their final states, control from the two orthogonal regions joins back into 

one flow. 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig07
http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig05
http://umlguide2.uw.hu/ch21lev1sec2.html#ch21fig05
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Whenever there's a transition to a composite state decomposed into orthogonal regions, 

control forks into as many concurrent flows as there are orthogonal regions. Similarly, 

whenever there's a transition from a composite substate decomposed into orthogonal 

regions, control joins back into one flow. This holds true in all cases. If all orthogonal 

regions reach their final states, or if there is an explicit transition out of the enclosing 
composite state, control joins back into one flow. 

Note 

Each orthogonal region may have an initial, final, and history state. 

 
 

Fork and Join 

Usually, entry to a composite state with orthogonal regions goes to the initial state of 

each orthogonal region. It is also possible to transition from an external state directly to 

one or more orthogonal states. This is called a fork, because control passes from a single 

state to several orthogonal states. It is shown as a heavy black line with one incoming 

arrow and several outgoing arrows, each to one of the orthogonal states. There must be 

at most one target state in each orthogonal region. If one or more orthogonal regions 

have no target states, then the initial state of those regions is implicitly chosen. A 

transition to a single orthogonal state within a composite state is also an implicit fork; 
the initial states of all the other orthogonal regions are implicitly part of the fork. 

Similarly, a transition from any state within a composite state with orthogonal regions 

forces an exit from all the orthogonal regions. Such a transition often represents an error 
condition that forces termination of parallel computations. 

A join is a transition with two or more incoming arrows and one outgoing arrow. Each 

incoming arrow must come from a state in a different orthogonal region of the same 

composite state. The join may have a trigger event. The join transition is effective only if 

all of the source states are active; the status of other orthogonal regions in the 

composite state is irrelevant. If the event occurs, control leaves all of the orthogonal 
regions in the composite state, not just the ones with arrows from them. 

Figure 22-8 shows a variation on the previous example with explicit fork and join 

transitions. The transition maintain to the composite state Maintenance is still an implicit fork 

into the default initial states of the orthogonal regions. In this example, however, there is 

also an explicit fork from Idle into the two nested states Self diagnose and the final state of 

the Commanding region. (A final state is a real state and can be the target of a transition.) If 

an error event occurs while the Self diagnose state is active, the implicit join transition 

to Repair fires: Both the Self diagnose state and whatever state is active in 

the Commanding region are exited. There is also an explicit join transition to the Offline state. 

This transition fires only if the disconnect event occurs while the Testing devices state and the 

final state of the Commanding region are both active; if both states are not active, the event 
has no effect. 

Figure 22-8. Fork and join transitions 

http://umlguide2.uw.hu/ch22lev1sec2.html#ch22fig08
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Active Objects 

Another way to model concurrency is by using active objects. Thus, rather than 

partitioning one object's state machine into two (or more) concurrent regions, you could 

define two active objects, each of which is responsible for the behavior of one of the 

concurrent regions. If the behavior of one of these concurrent flows is affected by the 

state of the other, you'll want to model this using orthogonal regions. If the behavior of 

one of these concurrent flows is affected by messages sent to and from the other, you'll 

want to model this using active objects. If there's little or no communication between the 

concurrent flows, then the approach you choose is a matter of taste, although most of 
the time, using active objects makes your design decisions more obvious. 

Common Modeling Techniques 
Modeling the Lifetime of an Object 

The most common purpose for which you'll use state machines is to model the lifetime of 

an object, especially instances of classes, use cases, and the system as a whole. 

Whereas interactions model the behavior of a society of objects working together, a state 

machine models the behavior of a single object over its lifetime, such as you'll find with 
user interfaces, controllers, and devices. 

When you model the lifetime of an object, you essentially specify three things: the 

events to which the object can respond, the response to those events, and the impact of 

the past on current behavior. Modeling the lifetime of an object also involves deciding on 

the order in which the object can meaningfully respond to events, starting at the time of 
the object's creation and continuing until its destruction. 

To model the lifetime of an object, 

 Set the context for the state machine, whether it is a class, a use case, or the 

system as a whole. 

o If the context is a class or a use case, find the neighboring classes, 

including any parents of the class and any classes reachable by 

associations or dependences. These neighbors are candidate targets for 

actions and are candidates for including in guard conditions. 
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o If the context is the system as a whole, narrow your focus to one behavior 

of the system. Theoretically, every object in the system may be a 

participant in a model of the system's lifetime, and except for the most 

trivial systems, a complete model would be intractable. 

 Establish the initial and final states for the object. To guide the rest of your model, 

possibly state the pre- and postconditions of the initial and final states, 

respectively. 

 Decide on the events to which this object may respond. If already specified, you'll 

find these in the object's interfaces; if not already specified, you'll have to 

consider which objects may interact with the object in your context, and then 

which events they may possibly dispatch. 

 Starting from the initial state to the final state, lay out the top-level states the 

object may be in. Connect these states with transitions triggered by the 

appropriate events. Continue by adding actions to these transitions. 

 Identify any entry or exit actions (especially if you find that the idiom they cover 

is used in the state machine). 

 Expand these states as necessary by using substates. 

 Check that all events mentioned in the state machine match events expected by 

the interface of the object. Similarly, check that all events expected by the 

interface of the object are handled by the state machine. Finally, look to places 

where you explicitly want to ignore events. 

 Check that all actions mentioned in the state machine are sustained by the 

relationships, methods, and operations of the enclosing object. 

 Trace through the state machine, either manually or by using tools, to check it 

against expected sequences of events and their responses. Be especially diligent 

in looking for unreachable states and states in which the machine may get stuck. 

 After rearranging your state machine, check it against expected sequences again 
to ensure that you have not changed the object's semantics. 

For example, Figure 22-9 shows the state machine for the controller in a home security 

system, which is responsible for monitoring various sensors around the perimeter of the 
house. 

Figure 22-9. Modeling the Lifetime of An Object 

http://umlguide2.uw.hu/ch22lev1sec3.html#ch22fig09
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In the lifetime of this controller class, there are four main states: Initializing (the 

controller is starting up), Idle (the controller is ready and waiting for alarms or commands 

from the user), Command (the controller is processing commands from the user), 

and Active (the controller is processing an alarm condition). When the controller object is 

first created, it moves first to the Initializing state and then unconditionally to 

the Idle state. The details of these two states are not shown, other than the self-

transition with the time event in the Idle state. This kind of time event is commonly found 

in embedded systems, which often have a heartbeat timer that causes a periodic check of 
the system's health. 

Control passes from the Idle state to the Active state on receipt of an alarm event (which 

includes the parameter s, identifying the sensor that was tripped). On entering 

the Active state, setAlarm is performed as the entry action, and control then passes first to 

the Checking state (validating the alarm), then to the Calling state (calling the alarm 

company to register the alarm), and finally to the Waiting state. 

The Active and Waiting states are exited only upon clearing the alarm or by the user 
signaling the controller for attention, presumably to issue a command. 

Notice that there is no final state. That, too, is common in embedded systems, which are 
intended to run indefinitely. 

 


